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This paper examines a flow-aerofoil interaction problem that we believe is likely to 
be an important issue in advanced aircraft propulsion systems involving supersonic 
propellers. They are potentially noisy and it is important to identify the mechanism 
by which they generate noise so that they can be optimized for acceptable operation. 
One of the most potent sources of noise lies in the possibility that a second stage 
propeller blade cuts through the core of the tip vortex shed from a first stage blade. 
Then suddenly the streaming core flow must adjust to the boundary constraints of 
that second stage blade, and the adjustment will inevitably involve compressive 
waves that escape as sound. How strong these sound waves are, how long their life 
is and where they go to are important questions, the answers to some of which are 
obtained in this paper. We examine here what we think is a canonical problem and 
determine the level and directionality of the sound generated by the interruption of 
the axial vortex-core flow by a supersonic blade. The principal sound is launched in 
the Mach-wave direction, where the pressure pulse has an amplitude that decreases 
much more slowly than it would from spherical spreading. This pressure pulse can 
reach a distant observer with a very large amplitude, 160 dB or higher being typical. 
The peak sound pressures are found to be independent of blade speed at high 
supersonic tip velocity, while the energy radiated in the pulse, because of its reducing 
duration, attenuates as the supersonic speed increases. This aspect gives grounds for 
believing that the higher the speed, the quieter will be the stage interaction sound of 
a contrarotating supersonic propeller. 

1. Introduction 
Pressures on fuel economy and high flight speed lead to the prospect of multistage 

multibladed propellers whose tips move through the flow with supersonic speed (see 
figure 1).  This is a potentially noisy prospect, and the most intense sound is likely to 
come from the unsteady conditions created when an aerofoil crosses quickly through 
the vortical tip flow of the previous propeller stage (figure 2).  This intense interaction 
is not only likely to be the noisiest source but it is also most difficult to analyse and 
quantify. Analysis is difficult because the flow is nonlinear, and experiments are not 
easy because rigs need high power and precision - not to mention the safety aspects. 
It is therefore appropriate to consider approximate models, models that  can perhaps 
contain essential features of the complicated complete problem while being simple 
enough to  analyse exactly. It would be very useful to solve a canonical problem and 
that is what this paper is about. 

Efficient supersonic aerofoil sections are likely to work a t  low angles of incidence 
and to conform with linearized inviscid supersonic aerodynamics. The interactions of 
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FIGURE 1. A high-speed propeller producing a vortex-tip flow behind it. 
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FIGVRE 2. Sound is generated by the interruption of the vortex tip flow from the first stage 
propeller by the second stage propeller. 

such an aerofoil with a wake flow might also be analysed in the first instance 
according to linear theory, whereupon the sound-producing interaction is an effect to 
be added linearly to the basically steady blade motion. The sound generated by that 
interaction can then be computed in the simpler case where the aerofoil moves 
without a steady load. If we neglect the linearly additional effects of blade thickness, 
our problem then reduces to the sound of a zero-thickness flat aerofoil moving 
supersonically and inviscidly in its own plane, producing sound as it crosses an 
inhomogeneity of the flow. The sound so generated is likely to contain sharp-fronted 
weak shock waves and as such will propagate relative to and through the 
inhomogeneous propulsion stream according to ‘ray theory’. The sound of the 
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leading edge will not be overtaken by that from the trailing edge of the propeller 
blade in the most noisy ‘Mach-wave ’ direction, so that the sound generation problem 
is essentially modellable by treating the leading edge as the edge of a semi-infinite flat 
plate. Of course, this is an enormously simplified model of the practical case, but it 
does, we think, contain a basic for calculating rigorously the strength of the most 
intense pressure pulse that will be generated by a supersonically moving blade 
impacting an inhomogeneity of the flow. The manner in which this sound reaches the 
distant observer, depending as it does on the refraction influences of those parts of 
the propulsion flow through which it travels, can only be determined when those 
influences are themselves properly modelled. To attempt both the generation and 
propagation problem at the same time is, we think, an unreasonably challenging 
task, which we are happy to put off until later. 

The structure of the inhomogeneity which is to be scattered into sound by the 
supersonic aerofoil is also complicated enough to merit a gentle approach through a 
tractable idealized case. The main disturbance we are contemplating is the tip-vortex 
flow spreading downstream of the tip of the leading propeller blade. That vortex 
core, of course, moves with the main flow so that i t  lies a t  rest if we fix our coordinate 
axes in the flow, and the scattering aerofoil moves through it a t  small incidence with 
constant speed. Now it can happen that the aerofoil ‘chops’ the trailing vortex 
without disturbing the flow circulating about the vortex, the circular streamlines 
being in the plane of blade motion. In  fact, we think that this may be a desirable 
design objective. But the inevitable axial vortex-core flow cannot lie parallel to the 
aerofoil, and so it will be interrupted by blade passage, interrupted normally in the 
situation we perceive. That impact will generate sound, and it is our purpose here to 
quantify its magnitude and general characteristics. 

These supersonic propellers will operate a t  very high Reynolds number, the main 
features of such flows being unaffected by viscosity, and being therefore loss-less. 
The flow at  the centre of the vortex system, a tightly rolled multiply layered vortex 
sheet in which the flow is largely irrotational, will have the same steady-flow 
pressure-velocity relationship as would a purely irrotational flow. The pressure in 
the vortex core will be equal to that a t  its boundary, so therefore will be its velocity, 
but this time the velocity will lie in an axial direction. We expect there to be an axial 
velocity field in the vortex core of the same order of magnitude as the circulatory 
field that surrounds the vortex ; of the same order as the propeller-tip speed. This, 
when interrupted by a supersonically moving aerofoil, will inevitably be noisy. The 
simplest possible model containing the essential features of this vortex-blade 
interaction problem is, we think, a supersonic aerofoil that moves in its own plane 
perpendicular to a uniform cylindrical flow (the vortex core), and in this paper we 
examine in detail the sound generated by this interaction. 

The unsteady field set up by thin aerofoils moving through a non-uniform flow is 
by no means a new problem, It has been thoroughly studied over the last fifty years 
(see, for example, von KBrmBn & Sears 1938; Temple 1953; Ward 1955; Miles 1959) 
because of its relevance to the gust loading of aircraft wings. The techniques used to 
determine the unsteady wing loading are the same as those needed to characterize 
the sound field that radiates away from the aerofoil, though that is an aspect which 
is not covered in the classical gust-loading literature. The concern with noise is 
relatively recent and the prospect of counter-rotating supersonic propellers is very 
new indeed, and this gives rise to  the need now to explore aspects of the classical gust 
problem that were previously irrelevant. Amiet (1986a, b )  has described the subsonic 
aerofoil-flow interaction problem and our concern is to add to the general body of 
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knowledge by solving the supersonic problem. In doing so, we find interesting 
energetic relations between the steady flow and sound field and very considerable 
structure in the field scattered by supersonically moving aerofoils. 

2. Sound generated by a semi-infinite aerofoil 
We consider a semi-infinite aerofoil moving supersonically in its own plane 

perpendicular to a uniform cylindrical flow of radius a.  The coordinates system is 
chosen in such a way that the aerofoil lies in the plane x3 = 0, with its leading edge 
being parallel to the x2 axis and advancing a t  speed cM,  c being the constant sound 
speed and the Mach number M being larger than unity. The leading edge of the 
aerofoil coincides with the x2 axis a t  time t = 0. The cylindrical flow has a uniform 
velocity u,, in the negative-x, direction, and its axis is chosen to be the x3 axis. The 
situation is illustrated in figure 3. We consider the sound generated linearly by the 
interruption of the uniform cylindrical flow hy the moving aerofoil. The total flow 
field can then be regarded as the linear superposition of the cylindrical flow and an 
induced disturbance velocity field u,. Owing to the symmetrical geometry, it is 
sufficient to consider only the region x3 2 0. The sound pressure can be conveniently 
calculated through the use of Kirchhoff's theorem (Dowling & Ffowcs Williams 
1983), which relates the acoustic pressure at  any observation position to the velocity 
distribution on the plane x3 = 0, namely, 

(2.1) 

where po is the constant mean density, u, denotes the x3 component of the induced 
velocity field ui and the square brackets have the conventional retarded time 
implication, the quantity enclosed being evaluated a t  the retarded time 
7 = t - ly-xl /c .  The integrand of (2.1) is to be evaluated a t  y3 = 0, where the 
distribution of u3 can be specified as 

u,(y, 7) = u,H(a2 -yi) H(cMt -Mly-xl -yJ, (2.2) 

where H is the Heaviside step function, equal to unity for positive arguments and 
zero for negative arguments. This specification follows from the fact that the induced 
velocity vanishes ahead of the leading edge of the aerofoil, because the leading edge 
moves faster than sound, while on the aerofoil surface it also vanishes except in the 
region covered by the cylindrical flow, where i t  must be opposite to the flow velocity, 
to comply with the boundary condition that the total normal velocity on the aerofoil 
surface is zero. On substituting (2.2) into (2.1) and carrying out the partial derivative 
with respect to time t by noticing that the gradient of the Heaviside function is the 
Dirac delta function, we find that 

The &function can be utilized to evaluate the yz integral. The method of doing i t  can 
be found in books on generalized functions (e.g. Jones 1982). When this is done, we 
find that 
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FIGURE 3. The geometry and the coordinate system of the model problem. The spherical 
coordinates ( r ,  4 , O )  used in the text and the subsequent figures are defined by x1 = r sin 0 cos 4 ,  
s2 = T sin0 sin4 and xg  = T cosO. 

where y+ - are determined by solving the equation cMt-MIy-xl -yl = 0 for y2, that 
is, 

y+ = x2 *- {(y, -ct.Mt)2 --ll.12[(y1 - X I ) *  +4}i (2.5) 

The determination of y+ also results in the last two Heaviside functions in (2.4): 
when either of the arguments of the two is negative, cMt-Mly-xl-  y1 = 0 has no 
real solution for yz. and hence the integral vanishes. Now, it can be recognized that 
(3.4) can be integrated to inverse sine functions (e.g. Qradshteyn & Ryzhik 1980, 
formula 3.261), 

1 
M 

( M 2 -  l )y , -M(Mx, -c t )  
(2.6) M [ ( r ,  - cMf)Z- (M2- 1 )  x$ 

, arcsin Po %I LM 
2x(M2- 1p 

p ( x , t )  = 

the integration bounds A and R being determined by the Heaviside functions in the 
integrand of (2.4). In  doing so, quartic equations arising from the vanishing of the 
arguments of the Heaviside functions must be solved, which is algebraically 
complicated and tedious, except in the case of x2 = 0 which we will examine in the 
next section. It is straightforward, however, to solve these equations numerically. 
The sound pressure can then be obtained according to (2.6). 

Plotted in figure 4 is the sound pressure as a function of the radial position r in the 
direction # = 0 = in ,  where ( r ,  #, 0) are the spherical coordinates defined by 

x1 = r sin8 cos#, x2 = r sin0 sin#, x3 = r cos8. 

This figure is representative of any direction other than that along the Mach angle, 
which will be discussed shortly. Apparently, the sound is generated in the form of a 
pressure pulse that is switched on and off a t  zero amplitude. The maximum 
amplitude occurs in the middle of the pulse. As time increases, the waveform 
propagates away a t  constant speed c with its maximum amplitude decreasing 
according to l l r ,  or, equivalently l / c t ,  obviously owing to spherical spreading, which 
is illustrated in figure 4 by the dashed curve. The pressure 2,s. radius curves are all 
smooth and rounded in the far field, but have sharp faces in the near field (the curves 
corresponding to cMtla  = 2.0 and 4.0) when the leading edge of the aerofoil is within 
the cylindrical flow, because the pressure perturbations in this case jump from zero 
to a constant value across the edge of the Mach cone from the leading edge. As time 
t increases, the initial rectangular pressure form travels to the far field with its he.ight 
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FIGURE 4. Sound pressure calculated according to (2.6) with M = 4.0 in the 
$ = 8 = in. The l / r  decrease is illustrated by the dashed curve. 
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FIGURE 5. The angular distribution in the $-direction of the sound pressure for 8 = i x ,  

cMt/a = 8.0 and M = 4.0. 

decreasing owing to spherical spreading. That decrease starts at the rear face of the 
pressure pulse, so that, when cMt/a  = 4.0, only a very narrow part close to the front 
face of the initial rectangular waveform still remains its initial height, while most of 
the pulse has greatly decreased in amplitude. This gives the peak (of finite height) in 
the second curve at  cMt/a = 4.0 in figure 4. 

To demonstrate the directionality of the generated sound we calculate, and depict 
in figures 5 and 6, the sound pressures in different directions. In the far field r / a  b 1, 
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for 

\ 
FIGURE 7 .  A constant pressure pulse is launched in the Mach-wave direction 
0 = arcsin$l/M). The time increment in the figure is 1.0 and the magnitude of 
1/(M2- l)? 

9 = O  and 
the pulse is 

sound pressures usually decrease as l l r  owing to spherical spreading. However, it 
is evident that the amplitude of the pressure pulse is unaffected by the spherical 
spreading in the Mach-wave direction dead ahead of the moving aerofoil, that is, in 
the direction of 4 = 0 and sin0 = 1 /M.  This indicates that a pressure pulse of 
constant amplitude is launched in this direction. This situation is shown in figure 7 .  
It is clear that a sharp-fronted pulse is generated by the impact on the flow of the 
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moving aerofoil. This pressure pulse propagates along the Mach-wave direction a t  
speed c without attenuation. The rear face of the wavcform also becomes sharp as i t  
travels away. An intense bang will be heard by distant observers in this Mach-wave 
direction. 

All these features can also be derived by calculating the far-field sound from (2.3) 
through the expansion of the retarded time in the b-funct,ion. Since the source 
processes are confined to the disk Iy,( < a ,  the quantity ~ y J / ~ x ~  is a t  most of the order 
a/lxl which is small in the far field. Hence, we have the expansion 

where we have set y3 = 0 on the right-hand side and $, = x,/IxJ (a = 1,2) is of order 
one. In  the far field, Ixl/a % 1,  the expansion can be truncated after the term 
proportional to y,/lxl as the first-order approximation. In  this case, the argument of 
the &function in (2.3) becomes 

M(ct-Ixl)-y,(l - M i , ) + M i 2  yz. (2.8) 

With this simplification, the y, integral in (2.3) can be evaluated in a straightforward 
manner. A4fter some simple algebra, we find the far-field solution as 

where the quantities K ,  el and e2 are defined, to save writing, as 

(2 .11)  

The far-field behaviour of the generated sound is now clear from (2.9). The sound 
reaches the far field in the form of a pressure pulse whose shape is characterized by 
the quantity enclosed in the square root. At the boundaries of the waveform, this 
quantity vanishes, the pressure pulse being switched on and off a t  zero amplitude, 
while in the middle of the waveform, i t  takes its maximum value of unity. The l/lxJ 
decrease owing to spherical spreading is also evident in (2.9). 

When both g2 = 0 and 1 - M i 1  = 0, that is, in the Mach-wave direction, we notice 
that K vanishes so that (2.9) has a singularity, which is a failure of the first-order 
approximation. The reason for this is that the approximation ignores any variations 
in the emission time of the finite source distribution ; for an observer in the Mach- 
wave direction, the sound is generated, in this first-order approximation, as if the 
source were a concentrated point source of structure S(7). This is apparent from (2.8), 
which, in this event, reduces to M(ct-  Ixl), so that the pressure (2.3) is simply 

p ( x , t )  = ~ p o u o c M 6  1--  -, ( 
a singular field that results from the crude first-order approximation. To account for 
the variations of the emission time of the sources, i t  is necessary to truncate the series 
(2.7) after the term of order a2/lxI2, which is the leading term in this case. With this 
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second-order approximation, it can be shown that the pressure fluctuations in the 
Mach-wave direction are given by 

The inverse sine function varies from 0 to in ,  and hence there is no singularity 
present. Also, i t  can be seen that there is no spherical spreading effect in the Mach- 
wave direction, as illustrated in figure 7. 

3. Solution for the case of x, = 0 
In this section, we examine the sound in the plane x2 = 0. We choose to work with 

this special case because, on the one hand, its solution can be obtained and analysed 
exactly in closed form, and on the other hand, the general features of the generated 
sound can all be clearly revealed by this special situation, including the level and 
directionality of the most intense sound. Letting xz vanish, the squares of y+, given 
by ( 2 . 5 ) ,  are then equal and the two Heaviside functions involving y+ in p.4) are 
identical. Thus, the integration bounds A and B are respectively equal to the lower 
and the upper bound of an interval in the y, axis, determined by the three 
inequalities 

cMt-y, > 0, 

(y1 -cMt)2-M2[(y1 - x1)2+ x i ]  > 0 ,  

and 
(y, -cMt)2 

+(y1-X1)2+x; > 0. 
1 c 1 2  

a2-yf -  

Solving these inequalities to find A and B, and calculating the sound according to 
(2.6), we find that the acoustic pressures have four different non-zero expressions, 
each being valid in a different region. Denoting the four by p,, p,, p ,  and p,, we 
have 

Po uo CM 
P3 = ( M 2  - l); 3 P4 = Pl + Pz - P3. (3.2) 

The distribution of these values is shown in figure 8. When the cylindrical flow is 
interrupted by the moving aerofoil, sound is scattered, which spreads spherically to 
the far field. In the Mach wave direction, the pressure is given by p,, a sudden 
increase from zero to a constant value. This sharp-fronted pressure pulse propagates 
to the far field without attenuation in amplitude, which confirms the discussions of 
figure 7 in the previous section and indicates that the noisiest sound is heard by 
observers dead ahead of the moving aerofoil in the Mach-wave direction. The 
constant magnitude of the pressure pulse p ,  can be seen to be independent of the 
aerofoil Mach number A1 a t  high supersonic speeds, that is, when M 9 1. Actually, 
this is also true for the maximum of the amplitude of p ,  and p,. This peak prc’ssure 
is likely to be very loud. For example, the axial flow down a vortex will usually 
exceed 10 m/s, in which case the pressure perturbation at  the Mach angle is greater 
than 160 dB. Of course, this pressure pulse will, in real situations, undertake 
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FIGURE 8. The distribution of sound pressure in the plane x2 = 0. The numbers correspond to 
the subscripts of p in (3.1) and (3.2), e.g. p1 is the sound in the region labelled 1. 

refractive interactions with the inhomogeneous main flow through which the 
propeller blade moves, and possibly with other blades in a multistage propeller 
system, before it reaches the far-field observer. 

As the aerofoil moves forward, a silent region appears, when cMt > a (M2 - l);, near 
the cylindrical flow, which is indicated by the shadow area in figure 8. The silent 
region results from the finiteness of the time-space distribution of the source, the 
scattering process being of finite timescale and occurring within a finite space 
dimension, which is different from the equivalent two-dimensional problem where 
the source region is infinite in the y2 direction. The boundary of the silent area is 
initially given by the curve 

(cMt)2-(M2+1)d 
( M 2  + i)2 , (3.3) 

but eventually, when cMt is larger than a ( M 2 - M +  i ) / ( M -  i ) ,  it is bounded jointly 
by the first and the last generated wave, that is, the wave from x1 = -a and that 
from x1 = a,  and the curve (3.3) as shown in the last diagram of figure 8. Though 
the small p 4  region shrinks to zero a t  large t ,  the curve (3.3) (the dashed curve in 
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figure 8) never coincides exactly with the waves from x1 = -a and x, = a ,  because 
some waves propagating in this direction (near the Mach angle) are always behind 
the first and last generated waves. 

As time t + + 00, the shadow region spreads to the entire space ; the whole field 
becomes silent. Though the pressure fluctuations are then zero, the induced velocity 
is not, implying that a steady near-field motion is also built up by the impact of the 
aerofoil and some part of the scattered energy must be trapped near the cylindrical 
flow. This will be further analysed in the next section. 

From the structure of the solutions (3.1) and (3.2), it is evident that the sound 
pressures are finite everywhere. Near the edge of the Mach cone from the leading edge 
of the aerofoil, namely, near the Mach line (xl -cMt)' - ( M 2  - 1) xi = 0, the pressure 
is given by the constant value p,. Hence there is no singularity in the pressure field, 
p,, p ,  and p ,  being sound in regions not connected with the Mach line. 

Solutions (3.1) and (3.2) are exact expressions for the sound field. They can be 
expanded in the limiting case r / a  + 00 to display explicitly the far-field behaviour of 
the generated sound. To this end, we use the spherical coordinates ( r ,  $, 0) introduced 
in the previous section with $ = 0, so that x1 = r sin 0 and x3 = r cos 8,  and denote 

K = [ (s in#-F)2-(M2-1)  cos2# I (3.4) 

to save writing. The argument of the inverse sine function in (3.1) for p ,  thus 
becomes 

1+M2sin20+---2Msin8- a2 71 . (3.5) 
K r2 r 

In this, we can identify two small quantities, namely, a / r  and (c t / r )2  - 1 .  The former 
is obviously small because we seek solutions for r / a  --f co. The latter can be shown to 
be small by noticing that p ,  is the sound in a very narrow region bounded by the first 
and the last generated wave, as shown in figure 8 ;  it is non-zero only if time t is larger 
than the propagating time of the first generated wave (namely, the wave from 
x1 = - u ) ,  and smaller than that of the last generated wave which comes from 
x1 = a. Hence, we have 

from which it can be deduced that 

to the first order as a / r  -f 0. Evidently, the maximum order of (ct/r) ' -  1 is usually 
a / r .  Since the narrow region in which p ,  is valid only has one point adjacent to 
the Mach line, K is at least of order one except when approaching this line. Therefore, 
it is convenient and permissible to expand (3.5) in powers of 

U c2t2 - r2 
&2 = ~ €l = -, 

7K Y2K2 
(3.7) 

, FLM 195 
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It can be noticed that the quantities K ,  el and e2 defined above are actually the first- 
order terms of (2.10) and (2.11) in the previous section with x2 = 0. In terms of (3.7), 
the expression (3.5) reduces to 

-M2[1 - ( M 2 -  1) e2]i+ ( M 2 -  1) [1 -e; -1Cf2e2]fr, 

where the negative sign of the first term comes from the fact that, M sin 6'- ct/r  is 
always negative in the p ,  region. This result can be expanded as 

- 1 ++(M2- 1) (€;-:M%;) +. . . , (3.8) 

where the neglected terms are of higher orders in E ,  and/or e2. On substituting (3.8) 
into (3.1), we have 

Noting that in = arcsin (1) and using the formula (1.625) of Gradshteyn & Ryzhik's 
(1980) book for the addition of inverse sine functions, we find that 

Since the argument inside the square root is very small, we can further expand the 
inverse sine function to find 

Now the physical properties of the far-field sound are clearly revealed. The maximum 
amplitude of the waves decreases like l / r  as r +  00 owing to spherical spreading. 
Obviously, this maximum value occurs near the curve ct = r ,  which is in the centre 
of the waveform, that is, near the wave from the source at the origin. In  this case, 
e, tends to zero much more rapidly than el, so that (3.9) reduces to 

Po uo CM a Pl = 7;' 

The 1/r decrease is evident. From (3.4), it can be seen that K is in proportion to M 
when M @ 1. Thus the maximum amplitude of the sound waves is independent of the 
aerofoil Mach number M a t  high supersonic speed. On the other hand, near the 
boundaries of the p ,  region, we have, from (3.6), that e2 + 2e, /M, which gives that 
p ,  = 0, consistent with the previous analysis that  the pressure pulse in directions 
other than the Mach-wave direction is switched on and off at zero amplitude. When 
approaching the Mach line, caution must be used because e2 must be scaled 
differently there. From (3.6), it is clear that  ( c f / r ) 2 -  1 is in this event smaller than 
the order a / r ,  because sin 6' - 1 / M  near the Mach angle. In fact, i t  can be shown 
that 

M2-1 a2 
1+-- 

C 2 t 2  

r2  M 2  r 2 '  

Hence, terms of the order a2/r2 in the expansion (3.8) must be retained to find the 
correct asymptotic solution for this situation. When this is done, we find that the 
pressure tends to a constant value as it should. 

Now, we can derive the far-field approximations for p 2  in the same way. It turns 
out that  p ,  and p ,  have the same asymptotic form as r / a  + 00, which is given by (3.9). 

_- 
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Since p ,  is essentially a linear combination of p,, p ,  and p,, it poses no difficulty to 
analyse its far field. However, it can be noticed that the p ,  region shrinks very 
rapidly to zero as the pressure waves propagate away. Hence it is sufficient to ignore 
it as r + 00. This is evidently reasonable from figure 7 ; the back face of the waveform 
rapidly becomes sharp at large t ,  and the existence of the p ,  region can hardly be 
noticed. 

4. The scattered energy 
The sound energy scattered by the moving aerofoil can be found by considering the 

energy loss of the total flow during the interruption process, that is, by calculating 
the difference between the energy contained in the flow before the aerofoil cuts the 
cylindrical flow and that remaining in the field after the interruption process. That 
energy difference must have escaped to infinity as sound since the dragless aerofoil 
moves in its own plane and does no work. It is evident that the leading edge of the 
supersonically moving aerofoil does not experience any suction force which could 
significantly affect the acoustic radiation, as i t  might do in subsonic situations 
(Cannell & Ffowcs Williams 1973), because the supersonic leading edge cannot be 
affected by the disturbances generated by the leading edge itself. It is also evident 
that no energy is radiated from the aerofoil surface because the energy flux on the 
plane x3 = 0, in which the aerofoil lies, is identically zero since the total normal 
velocity on the aerofoil surface (x ,  < cMt) always vanishes and the pressure 
perturbations are always zero ahead of the leading edge (xl > cMt) that advances at 
supersonic speed. Hence the total energy (the acoustic and the kinetic energy) in the 
field is conserved during the whole process of interruption of the steady flow by the 
semi-infinite aerofoil. The aerofoil generates sound by scattering the jet's energy into 
sound, the strength of which can be evaluated by energy conservation arguments. 

Suppose that the main flow, of velocity vt(x) with av,/ax, = 0, is interrupted by the 
aerofoil, producing a disturbance velocity potential 9, so that the total velocity of 
the interrupted flow is v,+&p/ax,. In  our particular case where the jet flow is 
perpendicular to  the moving aerofoil, 81, only has one component in the negative-x, 
direction (noting that the flow does not have a uniform velocity component in the 
x, direction). At time t + - 00 when the aerofoil is still far away from the flow v,, there 
is no disturbance in the field and the total energy contained in the flow is given 
by 

E-, = /&,[vt(x)l2 d3x, (4.1) 

where the volume integral is over the entire space. As time t + + co , the leading edge 
of the semi-infinite aerofoil will move far downstream. The flow is then effectively 
bounded by an infinite plane boundary at x3 = 0;  the interrupted flow will eventually 
settle down to a steady state with the induced velocity potential determined by the 
Laplace equation Vz+ = 0 and the boundary condition that the total normal velocity 
on the aerofoil surface must vanish. 

*=-vg o n x , = ~  
ax3 

then imposes the solution for cp (e.g. Jeffreys & Jeffreys 1956) 

(4.2) 
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This is the near-field motion which does not die out with time, so that the total 
energy remaining in the field a t  time t + + 00 is 

2 

E,, = l i p o  [vi +g] d3x. (4.4) 

By making use of the relations avi/axi = 0 and V2p? = 0, this can be rewritten as 

where E-, is the energy in the flow a t  time t+ - co and is given by (4.1). The 
scattered acoustic energy E, can now be found by calculating the difference between 
E-, and E,,,: 

E,  = E-,-E+, = po ~ V ~ + V -  d2x^,, (4.6) lx,i 23 
where the last step follows from applying the divergence theorem to the volume 
integral in (4.5). I n  doing so, we have utilized the symmetrical geometry of the 
problem and performed the volume integral only in the upper half-space with the 
result doubled. On the surface of the aerofoil, namely on the plane x3 = 0, we have 
the boundary condition (4.3). Thus (4.6) can be simplified as 

E, = PO I X a P " ' 3  d2xa. 

The velocity potential p? is given by (4.3), so that for any initially steady velocity field 
vir the energy- scattered into sound by a semi-infinite aerofoil is 

(4.7) 

This result is derived without any particular specification of either the value of the 
supersonic speed of the aerofoil or the particular distribution of the basic flow field 
tii, provided that it is steady with finite dimensions in the plane in which the aerofoil 
moves. It can be seen from (4.7) that  the scattered sound energy is independent of 
the Mach number of the supersonic aerofoil. For our uniform cylindrical flow, we 
have 

2J3(X) = -uoH(a2-x:). (4.8) 
Hence, (4.7) becomes 

(4.9) 

The x, integral can be carried out immeditely (e.g. Ffowcs Williams & Lovely 
1975), 

(4.10) 

where &(z )  is the complete elliptic integral of the second kind. Thus, (4.9) yields 
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Changing the integration variables to polar coordinates and using the formulae 
(8.112) and (6.132) given by Gradshteyn & Ryzhik (1980). we find that 

(4.11) 

This is the sound energy scattered by the semi-infinite aerofoil which is only 
related to the parameters of the cylindrical jet flow and is independent of the 
supersonic aerofoil speed. This result, derived through arguments of energy 
conservation, can also be obtained directly from the far-field acoustic motions, which 
we do next, following suggestions by H. Levine in a private communication (also see 
Levine 1987). We start with the far-field acoustic pressure perturbations that can be 
found from (2.3) by approximating l/ly-xl by l/lxl and Iy-xl by IxI-y,i,. Thus 
we have 

Po uo CM H(a2-y:) S(cMt-yl-Mlxl +Mi,y,) d2y,, 

The total acoustic energy can be found by integrating the square of this result, 
divided by pot, which gives the far-field energy flux in the radial direction, over a 
spherical surface of large radius 1x1 from time t -j - 00 to t + + CO. This yields the 
result for the sound energy E,, 

(4.12) 

where the &integral is from 0 to $a and that with respect to q5 from 0 to 2x. Other 
integrals are all performed from - 00 to + 00. Now we can carry out the $-integral 
with the result expressed in terms of a Bessel function which can then be integrated 
with respect to 0, according to formula (6.554) of Gradshteyn & Ryzhik's (1980), to 
give 

Substituting this into (4.12), and performing the k-integral according to 

dZ = $a sgn ( T ) ,  jom %? 
wit'h sgn denoting the sign function, we find that 

H(a2- y:)H(d-z:) d2ya d2z,. 
X 

IY, - %I 
Since the Mach number M is larger than one, the arguments of both the two sign 
functions in the integrand are always positive. Hence the quantity enclosed in the 
square brackets is identically equal to 2. This result is then seen to be exactly the 
same as (4.9), and hence (4.11), the result derived through energy conservation 
arguments. The agreement of the two calculations also gives evidence that the 
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supersonic leading edge is indeed dragless, because the far-field calculation does not 
involve any assumption a t  the leading edge, but gives the same result as that of the 
energy conservation arguments which presume a dragless leading edge. 

5. The trailing-edge problem 
Now, we consider the reciprocal problem of that discussed in the previous sections, 

namely a semi-infinite plane with a trailing edge moving supersonically in the 
positive-x, direction. Though the geometry of the trailing-edge problem is 
‘reciprocal ’ to  that  of the leading edge, the solutions for the two situations are quite 
different. Actually, the supersonic-trailing-edge aerofoil does not scatter any sound. 
It does not affect the near-field motions either. This is evident from Kirchhoff’s 
theorem (Dowling & Ffowcs Williams 1983) that expresses the pressure perturbations 
in the field in terms the pressure fluctuations on the plane x3 = 0, in which the trailing 
edge aerofoil lies, namely 

(5.1) 

where r is the retarded time t-ly-xJ/t and the integrand is to be evaluated a t  
y3 = 0. Since the trailing edge moves supersonically, the unsteady disturbances 
caused by the trailing edge, if there are any, will all be confined to the region behind 
the trailing edge. The motions ahead of it (on the semi-infinite aerofoil surface in 
particular) are then steady and the unsteady pressures p ( y ,  r )  vanish there. Behind 
the trailing edge on the plane y3 = 0, p ( y ,  r )  is also zero owing to the symmetrical 
geometry. Hence we have 

p ( y ,  r )  EZ 0 on y3 = 0 

The equation (5.1) thus yields that the pressure fluctuations caused by the trailing 
edge are identically zero, no sound being scattered. It is also clear that the trailing 
edge has no effect on the near-field kinetic motions either, because the total kinetic 
energy contained in the field is unchanged during the passage of the trailing-edge 
aerofoil. The total flow, being the cylindrical jet flow supplemented by the steady 
potential flow (4.3) that is built up by the semi-infinite trailing edge aerofoil a t  time 
t + - 00, is unchanged during the whole process. 

In  this case, there is no need to apply the Kutta condition a t  the sharp trailing 
edge that moves supersonically, because there is no unsteady load there. For finite 
aerofoils of large chord, this may also be the case, because the trailing and the leading 
edge in this case are likely to be energetically decoupled. If the chord is sufficiently 
large, the unsteady field produced by the leading edge may become so weak, owing 
to spherical spreading, before it reaches the trailing edge that its load a t  the trailing 
edge has no significant influence on the flow. The flow through which the trailing edge 
moves is then essentially the steady potential flow built up a long time ago. In  other 
words, the trailing edge of a sufficiently large aerofoil of supersonic speed behaves in 
the same way as that of a semi-infinite plane. 

For aerofoils of small or moderate chord, the unsteady field caused by the leading 
edge may induce a non-negligible load at the sharp trailing edge, the flow there 
behaving singularly. While the imposing of a Kutta condition at the trailing edge, 
which involves vortex shedding behind it,  may still be a possible way to avoid the 
unphysical singularities a t  the sharp edge, as in subsonic situations (Crighton 1985), 
the generation of shock waves, which is the main characteristic of supersonic flows, 

for any y,. 
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is a better alternative possibility to render the flow finite there. I n  the latter case, the 
unsteady load a t  the trailing edge, predicted by inviscid shock-free theories, would 
in real flows be cancelled by shock-wave discontinuities. No Kutta condition would 
then be needed. In  general, we believe that both the production of vortices and the 
generation of shock waves are possible for rendering the flow field finite a t  the trailing 
edge in supersonic flows. It is reasonable to conjecture that there is a competition 
between these two mechanisms, their relative importance depending on how easily 
the two processes can take place in a particular flow. In  other words, the relative 
importance of the typical Reynolds number and the Mach number of the flow decides 
the degree of predominance of either of the two mechanisms. In aeroacoustics, the 
typical Reynolds number is usually very high and compressive motions are the main 
characteristic of supersonic flows. Hence, the generation of shock waves may be a 
much easier process to affect than the production of vortices. This gives grounds for 
suggesting that it may not be necessary to impose a Kutta condition a t  the trailing 
edge for supersonic air flows, in sharp cont,rast with subsonic flows where vortex 
shedding is the only way to cancel the singularity at the trailing edge. 

6. A piston source model for energy calculation 
It can be noticed that the basic equations and the boundary conditions for the 

induced velocity potential q and the pressure fluctuation p in the flow-aerofoil 
interaction problem are identical to those in the problem where there is n o  jet flow 
but a piston source of constant velocity uo is prescribed on the aerofoil surface within 
the region lxal < a. Since the pressure perturbations are identical for both problems, 
the acoustic effects must be the same for the two situations; the sound energy 
radiated to infinity must be the same. The energy scattering processes are, however, 
different in the two cases. In  this section, we establish the equivalence of the two 
problems when evaluating the acoustic radiation and, also, identify their differences 
concerning the processes of energy conversion. 

Let us consider the leading-edge problem. Since there is no jet flow, the whole field 
a t  time t --f - 00 when the aerofoil is far upstream is motionless and the total energy 
is zero. At time t --f + 00 when the aerofoil is far downstream, the total kinetic energy 
in the field is determined by the piston-induced velocity potential that satisfies the 
Laplace equation V z q  = 0 and the boundary condition 

This gives 

The kinetic energy E ,  can be calculated according to 

E k - - 1 2 p O  1 (Vcp)' d3x = $p0 / V ( q V q )  d3x, 

where we have used V2v = 0 to derive the last step. Applying the divergence theorem 
to the volume integral with a result expressed in terms of and +,/ax, on x3 = 0, 
which are given respectively by (6.1) and (6.2), we find that 
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This is the near-field energy produced by the piston source, which remains in the field 
long after the passage of the leading edge. The acoustic energy is then equal to the 
difference between the total energy radiated by the piston source and the near-field 
energy (6.3). The former can be calculated by integrating the energy flux over an 
infinite plane control surface just above the coordinate plane x3 = 0. The expression 
for the pressure fluctuations on this control surface can be chosen as (2.3) with 
x3 + 0, which is a convenient form for evaluating the energy, and the velocity on 
this surface is given by (6.1) on the aerofoil and vanishes otherwise. Hence, the 
energy flux on the control surface is 

The total energy produced by the piston source is twice the result obtained by 
integrating this over time t and space x,, being twice because the same amount of 
energy is radiated into the lower half-space. The t-integral can be performed by 
utilizing the S-function, to yield the result 

It is now clear that the piston source produces the same amount of acoustic energy 
as that scattered from the jet flow by a semi-infinite aerofoil, because the difference 
between (6.5) and (6.3) 

is exactly equal to (4.11), the sound energy from the flow-aerofoil interaction. From 
the foregoing analysis, we see that the total energy (6.5), produced by the piston 
source, is equally shared between the near-field steady potential motions and the far- 
field outward-travelling acoustic wave motions. This kind of equipartition of energy 
has been observed previously in a variety of impact-sound problems (see, for 
example, Taylor 1942 and Hill 1986). It is also clear that, though the same amount 
of energy is radiated to the far field as sound in both the flow-aerofoil interaction 
problem and the piston source problem, the processes of energy conversion are quite 
different, the near-field motions being different for the two cases. For the 
flow-aerofoil problem, no energy is produced from the aerofoil surface because the 
energy flux on the plane x3 = 0 is identically zero, and the sound energy radiated to 
infinity is all scattered from the cylindrical steady jet flow, while in the piston source 
problem, both the acoustic radiation and the near-field kinetic energy come from the 
energy produced a t  the aerofoil surface because the piston source in this case does 
work on the fluid. 

7. Energy scattered by a finite-chord aerofoil 
In  practice, aerofoils have finite chord and i t  is obviously of interest to see whether 

the finiteness of the aerofoils can significantly affect the generated sound. We 
consider an aerofoil of finite chord 2b that  moves supersonically in the plane x3 = 0. 
Since the disturbances caused by the trailing edge of the supersonic aerofoil cannot 
affect the field ahead of it,  the pressure fluctuations on the finite aerofoil surface are 
precisely the same as those on a semi-infinite aerofoil, which is given by (2.3) with 
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x3 = 0. Because the pressure fluctuations vanish elsewhere in the plane x3 = 0 owing 
to symmetry, (2.3) can be utilized to find the pressure perturbations in the field 
according t o  Kirchhoff's theorem (5.1), and hence, the acoustic energy radiated to 
infinity. The energy can also be calculated in the piston source model through the 
evaluation of the energy across the plane control surface just above the coordinate 
plane x3 = 0. I n  this event, the velocity distribution on the aerofoil has the same 
specification as that in the semi-infinite case, both being determined according to the 
vanishing normal velocity boundary condition; it is given by (6.1) on the finite 
aerofoil surface but vanishes elsewhere. Behind the trailing edge, the velocity 
distribution is unknown, but this does not affect the energy calculation, because the 
pressure fluctuations there always vanish owing to symmetry, and so too does the 
energy flux. Hence the energy flux in the plane x3 = 0 for this finite-chord situation 
is still given by (6.4), provided we replace H(cMt-x,)  by 

H(cMt - xl) -H(cMt -XI - 2b) .  

Integrating the result over time t and space x,, we derive an expression 

where we have multiplied the result by two to take account of the energy into the 
lower half-space, so that E, is the total energy produced by the aerofoil. The integrals 
in (7.1) can be evaluated by changing the integration variables x, and y, into polar 
coordinates according to 

xl-yl = k COSU., y1 = h C O S ~ ,  

x2-y2 = k sina, i yz = h sinp, 

which transfer (7.1) to 

E, = pd a2 - k2 - A 2  - 2kh cos (a-p)] H[2b  - k( cos a+ M ) ]  h dh dk d a  dp, 
2n 

(7.2) 

where both the a-integral and the P-integral are performed from 0 to 2n, the h- 
integration is from 0 to a and that with respect to k along the positive k-axis. In (7.2),  
we can replace cos(a-p) in the first Heaviside function by cosp, because the p- 
integral is over a complete period. Thus, the a-integral and the h-integral can be 
evaluated separately, by utilizing respectively the two Heaviside functions, with the 
results 

Jl:'H[2b-k(cosa+M)]da = 2H (: --M+ 1 )[ n-arccos r: --M ) H ( 1 +M--  31 , 

and ~ ~ H ( a z - k z - h z - 2 k h  cosp)hdA = ~a2[H(a-h- ) -H(a-h+)]  

++A; H(h+)  H ( u  - A+) - +Ah2 H ( h - )  H ( u  - L), 

where A, - = -k  cosp&(a2-k2 sin2/?);. 
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FIGURE 9. Energy scattered by aerofoils of finite chord. The dashed line indicates the energy 
from a semi-infinite aerofoil. 

On substituting these results into (7.2) and carrying out the P-integral, we find 
that 

1 E, = ’g 1; H (A - b)  [4a2 arccos (&) - ,%(*a2 - b2)$ 

This can be further calculated as 

1 
(7.3) 

a 1 
b M + 1  M - 1 ’  

when - < __ < ___ ypo u; a3 

16 l+-f(l) U <-<- 1 
when ~ 

b 
M + l  b M-1’ 3 P O U O a  [ zXa ] 

b 1 1 
Gf ( a  ( M -  1) 

where f(z) is a complicated combination of elementary functions and elliptic 
functions, but it can also be expressed by a simple integral as 

37 arccos7-(2+y2)(1 - -72)% 
2 $d% 7(2M7b/a  - b2/a2 - ( M 2  - 1) 7 ) 

f ( z )  = J 
with the lower limit of integration given by b/a(M + 1). 

These results are shown in figures 9 and 10, where the energy produced by the 
finite-chord aerofoil is plotted as a function of the aerofoil Mach number M in figure 9 
and as a function of the parameter b/a  in figure 10, which is the ratio of the aerofoil 
chord to the diameter of the cylindrical flow. Apparently, the upper bound of the 
radiated energy is that of a semi-infinite aerofoil, namely the result (6.5),  which is 
illustrated by the dashed line. This maximum energy is achieved, not as a limiting 
process as the aerofoil chord tends to infinity, but a t  a condition b > a(M + l) ,  as 
indicated by (7.3). For aerofoils with chord larger than 2a(M+ l ) ,  the radiated 
energy is independent of the aerofoil Mach number just as a semi-infinite aerofoil is. 
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FIGURE 10. The scattered energy as a function of the aerofoil chord. Note the rapid transition from 
the linear increase a t  small values of b/a  to the constant value y,  namely, the energy for a semi- 
infinite plane. 

As analysed in 55, the supersonic trailing edge in this case of large-chord aerofoil 
behaves in the same way as that of the semi-infinite plane, and has no influence on 
the flow field. This energy is then equally shared between the far-field acoustic waves 
and the near-field steady potential motions. 

For a fixed aerofoil chord, the radiated energy decreases as the Mach number M 
increases, indicating that the faster the supersonic aerofoil moves, the quieter the 
sound field will be. The decrease of Eb can be shown to be 1/M at high values of M. 
It is straightforward to demonstrate this by evaluating (7.1) in the limiting case of 
&I $ 1. The x, integral can be performed, in this event, as 

(7.4) 

and 

Apparently, H(Xo -Sl) vanishes and H ( X ,  -8,) --f 1 in the case of M >> 1. Hence, (7.4) 
reduces to 

4 K h  
da: = 

2n 2b s, M+cosa (&p - 1);' 

Equations (7.5) and (7.1) then yield that, for M B 1, 

2np0 ui a2b 
E b N  M ' 

(7.5) 

This result clearly reveals a 1 /M-dependence of the radiated energy ; i t  decreases as 
the supersonic aerofoil speed increases, mainly because of the reducing duration of 
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FIGURE 1 1 .  The scattered energy by a finite-chord aerofoil decreases as 1/M a t  high supersonic 
aerofoil speeds : -. exact calculation ; ---, asymptotic result. 

the pressure pulse at high supersonic speed. The asymptotic solution ( 7 . 6 )  is 
compared, in figure 11, with the exact calculations of ( 7 . 3 ) .  The result (7 .6 )  also 
predicts a linear relation between the energy and the chord of the aerofoil. The linear 
increase of sound with the dimension of the aerofoil is true only for the case of high 
supersonic speed and moderate chord; for fixed M and very large 6, (7.4) reduces 
to (4.10) instead of ( 7 . 5 ) ,  because H(S,-8,) would then be equal to unity and 
H(S,  -8J vanishes, and the energy is given in this case by the first line of (7 .3 ) .  The 
dependence of the radiated energy on the dimension of the aerofoil is illustrated in 
figure 10; E ,  increases linearly with the aerofoil chord a t  small values of bla ,  but 
rapidly approaches the value 16p,?cia3/3, that  is, the value for a semi-infinite plane, 
as the ratio b / a  increases. 

8. Conclusions 
We have examined a flow-aerofoil interaction problem. The sound generated by a 

semi-infinite plane with a leading edge moving supersonically through and 
interrupting a uniform cylindrical flow has been found exactly. The generated sound 
takes the form of a pressure pulse of finite duration. I n  directions other than the 
Mach-wave direction, the pressure pulse is switched on and off a t  zero amplitude, and 
has a maximum in the middle, which decreases, owing to spherical spreading, 
inversely in proportion to the distance that the pulse travels. Along the Mach angle, 
it has been found that the pulse has sharp faces (both front and rear) and constant 
amplitude ; it reaches distant observers without attenuation according to linear 
theory. It is the noisiest sound from the flow-aerofoil interaction and is, we believe, 
likely to be ono of the most important aspects concerning the noise of aircraft using 
supersonic propellers. 

The energy radiated to infinity has been calculated explicitly. For a semi-infinite 
aerofoil, the sound is scattered from the uniform jet flow ; the loss of kinetic energy 
of the jet flow during the whole interruption process has been shown to be precisely 
equal to the energy radiated as sound to infinity. The scattered acoustic energy has 
been shown to be independent of the Mach number a t  which the supersonic semi- 
infinite plane moves. By calculating the sound energy radiated to infinity and 
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considering the conservation of energy, i t  has been demonstrated that the 
supersonically moving aerofoil does not experience any force whose work might 
affect the sound generation process. 

The trailing-edge problem has also been considered. For a semi-infinite aerofoil, it 
has been shown that the supersonic trailing edge has no effect on the flow at all ; it 
can neither radiate sound, nor alter the near-field motions. This has been shown to 
be also true for finite aerofoils of large chord, in particular, for aerofoils of chord 
larger than the diameter of the cylindrical flow times M + 1.  At high supersonic 
speeds, it has been demonstrated that finite-chord aerofoils radiate energy that 
decreases inversely as the Mach number of the aerofoil increases; the higher the 
speed, the quieter will be the sound generated as a result offlow scattering by a finite- 
chord supersonic aerofoil. 

Y. P.  Guo gratefully acknowledges the encouragement and financial support 
provided by Rolls Royce p.1.c. The authors would also like to thank Professor R.  S. 
Scorer for providing the photograph in figure 1. 

R E F E R E N C E S  

AMIET, R. K. 1986a Airfoil gust response and the sound produced by airfoil-vortex interaction, 

AMIET, R. K. 19866 Intersection of a jet by an infinite span airfoil. J .  Sound Vi6. 111, 

CANNELL, P. & FFOWCS WILLIAMS, J. E. 1973 Radiation from line vortex filaments exhausting 

CRIGHTON, D. G. 1985 The Kutta condition in unsteady flow. Ann.  Rev. Fluid Mech. 17, 

DOWLING, A. P. & FFOWCS WILLIAMS, J. E. 1983 Sound and Sources of Sound. Ellis Horwood. 
FFOWCS WILLIAMS, J. E. & LOVELY, D. J. 1975 Sound radiation into uniformly flowing fluid by 

compact surface vibration. J .  Fluid Mech. 71, 689-700. 
GRADSHTEYN, I. S. & RYZHIK, I. M. 1980 Table of Integrals, Series and Products (corrected and 

enlarged edition). Academic. 
HILL, D. C. 1986 Starting mechanics of an evanescent wave field. J .  Fluid Mech. 165, 319-333. 
JEFFREYS, H. & JEFFREYS, B. 1956 Methods of Mathematical Physics. Cambridge University 

JONES, D. S. 1982 The Theory of Generalized Functions. Cambridge University Press. 
KARMAN, VON T .  & SEARS, W. R. 1938 Airfoil theory for non-uniform motion. Aeronaut. Sci. 5 ,  

LEVINE, H. 1987 Acoustic power output from moving point singularities. J .  Acoust. Soc. A m .  81, 

MILES, J. E. 1959 The Potential Theory of Unsteady Supersonic Flout. Cambridge University 
Press. 

TAYLOR, G. I. 1942 The motion of a body in water when subject to a sudden impulse. In ScientiJic 
Papers of G. I .  Taylor (ed. G. I(. Batchelor), vol. 3, pp. 30G-308. Cambridge University 
Press. 

TEMPLE, G. 1953 Unsteady motions, Modern Developments in  Fluid Dynamics: High Speed Flow 
(ed. L. Howarth). Clarendon. 

WARD, G. pu’. 1955 Linearized Theory of High Speed Flow. Cambridge University Press. 

J .  Sound Vib. 107. 487-506. 

499-503. 

from a two-dimensional seini-infinite duct. J .  Fluid Mech. 58, 65-80. 

41 1-445. 

Press. 

379-390. 

1695-1 702. 


